Adaptive Morley element algorithms for the biharmonic eigenvalue problem

نویسندگان

  • Hao Li
  • Yidu Yang
چکیده

This paper is devoted to the adaptive Morley element algorithms for a biharmonic eigenvalue problem in [Formula: see text] ([Formula: see text]). We combine the Morley element method with the shifted-inverse iteration including Rayleigh quotient iteration and the inverse iteration with fixed shift to propose multigrid discretization schemes in an adaptive fashion. We establish an inequality on Rayleigh quotient and use it to prove the efficiency of the adaptive algorithms. Numerical experiments show that these algorithms are efficient and can get the optimal convergence rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C IPG Method for Biharmonic Eigenvalue Problems

We investigate the C interior penalty Galerkin (C IPG) method for biharmonic eigenvalue problems with the boundary conditions of the clamped plate, the simply supported plate and the Cahn-Hilliard type. We prove the convergence of the method and present numerical results to illustrate its performance. We also compare the C IPG method with the Argyris C finite element method, the Ciarlet-Raviart...

متن کامل

Guaranteed lower eigenvalue bounds for the biharmonic equation

The computation of lower eigenvalue bounds for the biharmonic operator in the buckling of plates is vital for the safety assessment in structural mechanics and highly on demand for the separation of eigenvalues for the plate’s vibrations. This paper shows that the eigenvalue provided by the nonconformingMorley finite element analysis, which is perhaps a lower eigenvalue bound for the biharmonic...

متن کامل

Optimal Solver for Morley Element Discretization of Biharmonic Equation on Shape-regular Grids

This paper presents an optimal solver for the Morley element problem for the boundaryvalue problem of the biharmonic equation by decomposing it into several subproblems and solving these subproblems optimally. The optimality of the proposed method is mathematically proved for general shape-regular grids. Mathematics subject classification: 65F08, 65N30, 65N99

متن کامل

A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes

The discrete reliability of a finite element method is a key ingredient to prove optimal convergence of an adaptive mesh-refinement strategy and requires the interchange of a coarse triangulation and some arbitrary refinement of it. One approach for this is the careful design of an intermediate triangulation with one-level refinements and with the remaining difficulty to design some interpolati...

متن کامل

The Morley element for fourth order elliptic equations in any dimensions

In this paper, the well-known nonconforming Morley element for biharmonic equations in two spatial dimensions is extended to any higher dimensions in a canonical fashion. The general -dimensional Morley element consists of all quadratic polynomials defined on each -simplex with degrees of freedom given by the integral average of the normal derivative on each -subsimplex and the integral average...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2018  شماره 

صفحات  -

تاریخ انتشار 2018